
Contract R&D for Polymer

Key Themes in Polymer R&D··· "Conservation" & "Sustainable Economy"

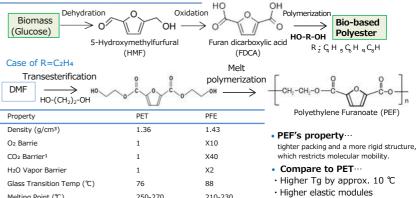
Challenges	Solutions	Actions
Dependence on fossil resources	-Transition fuels and chemical feedstocks to renewable biomass resources -Harness natural polymers	-Biomass-derived polymer materials -Biomass composites (CNF-reinforced, wood flour-filled) -Bio-based polymers from plants and microbes (NR, farnesene)
Environmental impact (pollution & degradation)	-Use the following materials & promote CO ₂ fixation /Biodegradable polymers for waste plastics & marine litter /Materials free from hazardous substances /Low-impact materials throughout production to disposal	-Development and use of biodegradable polymers from biomass -Substitution with safer raw materials -Review of material structures and manufacturing processes -Development of polymer synthesis from CO ₂ (carbonyl source)
Saving resources & energy (efficient use)	-Effective utilization of underused resources -Recycling (reuse, raw material/monomer recovery) -Durable materials -Energy & loss reduction in production	-Valorization of unused biomass (waste, woody, biomass) -Development of easily recyclable materials -Improvement of durability in use conditions -Milder production methods & fewer processing steps

Synthesis of TPE in DJK

Type (Abbr.)	Hard Segment	Soft Segment	Polymer Structure	Synthesis Method
TPV (Olefin)	PP crystal phase (Tm: 165 °C)	EPDM, EPR	Multi-phase Polymer Blends	Dynamic vulcanization
TPU (Urethane)	Urethane (H-bond, crystal)	Polyester, Polyether	Multi-block polymer	Step-growth polymerization
TPEE (Ester)	Polyester crystalline phase (Tm: 225 °C)	Polyester, Polyether	Multi-block polymer	Polymerization, Ring-opening polymerization
TPAE (Amide)	Polyamide (H-bond, crystal)	Polyester, Polyether	Multi-block polymer	Polymerization, Ring-opening polymerization

Items for Investigation

- · Small-scale synthesis of raw materials (polymers and oligomers)
- · Examination of composition and polymerization conditions
- · Small-scale trial production
- · Evaluation of moldability and physical properties


Case 3:Thermoplastic Polyurethane (TPU)

Segment	Performance	Property	e.g.
Soft- segment (SS)	Exhibiting Rubber Elasticity (Entropy Elasticity)	Polymer glycols with Tg less than RT	Polyester, Polyether, PC, Aliphatic (Mn=1000~4000)
Hard-Segment (HS)	Aggregating and functioning as physical crosslinking points.	Diisocyanate-chain extender product (high Tg, high Mp)	MDI, low-molecular- weight diols (1,4-BD), diamines
[Methods]			

Prepolymer method: Polymer glycol and isocyanate are reacted to form an NCOterminated prepolymer, followed by chain extension with a low-molecular-weight

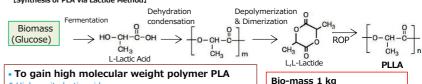
One-shot method: Polymer glycol, short-chain glycol, and diisocyanate are polymerized simultaneously (single-step process).

Case 1: Bio-based Polyester (PEF)

210-230

117

Case 2: Biodegradable Polymer(Polylactic acid: PLA)


250-270

108

Crystalline Flastic Modulus (GPa)

Melting Point (℃)

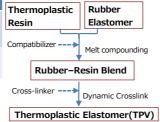
- $\textbf{Direct polymerization -} \textbf{Simple, but hard to get high-molecular-weight polymer} \rightarrow \textbf{Room for improvement}$
- 2) Lactide Method (ROP) High-molecular-weight polymer achievable → Main PLA synthesis method

- * High-purity lactic acid monomers
- * Suppress racemization in synthesis
- * Remove meso-lactide in purification
- * Minimize lactide moisture

PLA's property

The ester linkage contains only one methine carbon, resulting in poor chain segment mobility. Therefore, as an aliphatic polyester, it exhibits high heat resistance, high crystallinity and excellent mechanical properties. On the other hand, it is stiff and brittle, with a slow crystallization rate.

	i LLA 3 property			
J	項目	代表値		
	Crystalline Density(g/cr	n³) 1.29		
	Tg (℃)	57		
	Melt point (℃)	176		
	Molecular weight (Mw)	0.1-0.3 million		


PLLA's property

→PLA yield approx. 0.4 kg

Excellent Gas barrier property

Slower crystallization rate

Case 4:Dynamically crosslinked thermoplastic elastomer (TPV)

Thermoplastic Resin-Rubber Combinations¹ Rubber IIR H-NBR Resin PΑ PBT PP EVOH

- →Automotive glass run channel, door seals, interior materials,
- ⇒Gas barrier applications, ●⇒Other,
- ⇒Oil, heat, fatigue resistance, compression set resistance.
- 2) Butyl Rubber (IIR), Brominated Butyl Rubber (BIIR), Brominated isobutylene-co-para-methylstyrene Rubber (BIMS), 3) ACM, ANM.